

Monolith: Real Time Recommendation System With Collisionless Embedding Table

Zhuoran Liu et al., ByteDance Inc.

arXiv preprint.

Introduction

ByteDance

- An engineering-heavy paper from ByteDance, creator of TikTok
- Powers the Infamous(?) recommendation algorithms of TikTok
- Architecture is currently being used live in BytePlus Recommend

Key Contributions

- Unveils industrial details
- Open source release
- Decision making procedures through experiments in industrial settings

Preliminaries: Hashing

An example hash function:

$$h(x) = x \bmod 15$$

- A hash function maps input values of infinite range to finite-length buckets.
- Therefore sometimes more than one value is stored in a single bucket.
- This is hash collision.

[1] Image source : https://en.wikipedia.org/wiki/Hash_function

Preliminaries: Hashing in RecSys

- The number of user/item embeddings are theoretically infinite
- Hash tables automatically expand via rehashing according to load factor
- ... At the cost of slight data corruption.

[1] Image source : https://en.wikipedia.org/wiki/Hash_function

Preliminaries : Apache Kafka & Flink

- A queue is a FIFO(First-In-First-Out) data structure
- Apache Kafka enables multiple users to share a single queue deployed online!
- Apache Flink enables complex tasks to be performed during the pipeline!
- [1] Image source: https://en.wikipedia.org/wiki/Queue (abstract data type)
- [2] Image source: https://kafka.apache.org/08/documentation.html#introduction

Preliminaries: FM & DeepFM

$$\hat{y}(\mathbf{x}) := w_0 + \sum_{i=1}^n w_i x_i + \sum_{i=1}^n \sum_{j=i+1}^n \langle \mathbf{v}_i, \mathbf{v}_j \rangle x_i x_j$$

- Generalized frameworks for regression, classification, and ranking tasks
- Takes into account multi-hop interactions between features
- Recommendation tasks can be cast into 0-1 classification tasks via negative sampling

[1] Image and equation source: Rendle, Steffen. "Factorization machines." 2010 IEEE International conference on data mining. IEEE, 2010.

The Monolith Architecture

Figure 1: Monolith Online Training Architecture.

The Monolith Architecture

Training Parameter Server

- Distributed computing is a must for large-scale machine learning tasks
- Multiple workers each train with small batches of data and needs simultaneous access to parameters
- In a distributed ML task, each machine is either a parameter server or a worker node

Serving Parameter Server

- Holds parameters for the final recommendation model for users
- Parameters must be periodically synchronized with the training PS

Training Worker

- Runs forward passes, calculates gradients
- Sends back gradients to PS for parameter updates

Model Server

Inference worker for the final recommendation model for users

Batch Training with Monolith

- Training data is stored in HDFS
- Trains like your plain old everyday ML task, but for only one epoch
- Sends parameters to Serving PS when training is complete

- Same procedure as batch training, but uses stream data from live user interactions
- Apache Kafka is used for streaming interaction data
- Sends parameters to Serving PS once every few iterations

1: 1488844,3,2005-09-06 822109,5,2005-05-13 885013,4,2005-10-19 30878,4,2005-12-26 823519,3,2004-05-03 893988,3,2005-11-17 124105,4,2004-08-05 1248029,3,2004-04-22 1842128,4,2004-05-09

\cap									Fe	ature	vec	ctor :	x							\Box	Ta	rget y
X ⁽¹⁾	1	0	0		1	0	0	0		0.3	0.3	0.3	0		13	0	0	0	0	[]	5	y ⁽¹⁾
X ⁽²⁾	1	0	0		0	1	0	0		0.3	0.3	0.3	0		14	1	0	0	0		3	y ⁽²⁾
X ⁽³⁾	1	0	0		0	0	1	0		0.3	0.3	0.3	0		16	0	1	0	0		1	y ⁽²⁾
X ⁽⁴⁾	0	1	0		0	0	1	0		0	0	0.5	0.5		5	0	0	0	0		4	y ⁽³⁾
X ⁽⁵⁾	0	1	0		0	0	0	1		0	0	0.5	0.5		8	0	0	1	0		5	y ⁽⁴⁾
X ⁽⁶⁾	0	0	1		1	0	0	0		0.5	0	0.5	0		9	0	0	0	0		1	y ⁽⁵⁾
X ⁽⁷⁾	0	0	1		0	0	1	0		0.5	0	0.5	0		12	1	0	0	0		5	y ⁽⁶⁾
	Α	B Us	C	""	TI	NH	SW Movie	ST		TI	NH ner M			ed"	Time		NH ast	SW Movie	ST e rate	ed	$\ $	

- Two Kafka queues are used: Log Kafka & Feature Kafka
- Online Joiner consumes these queues to generate training examples
- Negative sampling is conducted during the process
- [1] Data snapshot from : https://grouplens.org/datasets/movielens/
- [1] Image and equation source: Rendle, Steffen. "Factorization machines." 2010 IEEE International conference on data mining. IEEE, 2010.

Figure 5: Online Joiner.

- Input two streams -> Outputs one stream
- **Apache Flink** is used for complex joining and negative sampling procedures
- **Caching** is always nice for memory management

The information feedback loop from [User \rightarrow Model Server \rightarrow Training Worker \rightarrow Model Server \rightarrow User] would spend a long time when taking the Batch Training path, while the Online Training will close the loop more instantly.

[1] Image source: Liu, Zhuoran, et al. "Monolith: Real Time Recommendation System With Collisionless Embedding Table." arXiv preprint arXiv:2209.07663 (2022).

13

24/06/2023

Experiments: Parameter Sync

- **RQ1.** Does online learning really improve recommendation performance?
 - A1. Yes it does.

Engineering Details: Parameter Sync

- According to experiment results, the more often you sync parameters the better.
- But parameter synchronization is not free when your model is terabytes large.
- We need to take the trade-off into account.

Engineering Details: Parameter Sync

Facts.

- Sparse embeddings are dominant among the model parameters.
- During a short time window, only a small subset of sparse embeddings are updated.
- Values of dense embeddings change much slower than sparse embeddings.

Derivations.

- Update costs of sparse embeddings are cheap.
 - Update as often as possible; up to once per minute
- Dense embeddings don't need to be updated as often.
 - Once per day is enough, preferrably at midnight or dawn.

[1] Image source: https://www.luigifreda.com/2017/04/04/optimization-momentum-really-works/

Experiments: Hash Collision

Figure 7: Effect of Embedding Collision On DeepFM, MovieLens

	User IDs	Movie IDs
# Before Hashing	162541	59047
# After Hashing	149970	57361
Collision rate	7.73%	2.86%

- RQ2. Does hash collision degrade recommendation quality?
 - A2. Yes it does.

Engineering Details: Hash Collision

Figure 3: Cuckoo HashMap.

- Cuckoo Hashmap is one of the collision-free hashing techniques
- Uses two hashmaps and two different hash functions
- When data is inserted into a pre-occupied bucket, old data is kicked out to the other side

Engineering Details: Parameter Sync

- More memory is required for collision-free hashing
- Facts.
 - User/Item IDs are long-tail distributed.
 - Stale IDs don't contribute to the recommendation quality as much.
 - Reasons: deleted accounts, user deleted the app, old trends, etc.
- Derivations.
 - Don't remember every single ID.
 - Only remember IDs with high occurences;
 - After applying a probabilistic filter(e.g. 75% chance to remember)

More Experiments: Parameter Sync

Figure 8: Effect of Embedding Collision On A Recommendation Model In Production

We measure performance of this recommendation model by online serving AUC, which is fluctuating across different days due to concept-drift.

Insights: Fault Tolerance

- Monolith automatically restarts upon failure
- Parameter updates are lost!
- Obvious solution is to take snapshots periodically
- ...but even so, some part of the data is lost.

Also, taking snapshots of a model that weights multiple terabytes is EXPENSIVE.

RQ3. How often should we take snapshots?

Insights: Fault Tolerance

"Suppose a model's parameters are sharded across 1000 PS, and they snapshot every day. Given 0.01% failure rate, one of them will go down every 10 days and we lose all updates on this PS for 1 day. Assuming a DAU of 15 Million and an even distribution of user IDs on each PS, we lose 1 day's feedback from 15000 users every 10 days. This is acceptable..."

Conclusions

Architectures

- Distributed computing is a must for large-scale ML tasks.
- Use parameter servers!
- Separate workers/parameter servers for training/inference.

Experiments

- Online learning improves recommendation performance.
- Sync parameters as often as possible.
- Hash collision degrades recommendation performance.
- Don't keep track of every single User/Item embeddings, just the important onces.
- It's ok to take snapshots a lot less frequently than you'd think.

Nonuniform Negative Sampling and Log Odds Correction with Rare Events Data

HaiYing Wang

Department of Statistics University of Connecticut haiying.wang@uconn.edu

Aonan Zhang

ByteDance Inc. aonan.zhang@bytedance.com

Chong Wang

ByteDance Inc. chong.wang@bytedance.com

Discussions